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ABSTRACT: High-refractive index dielectric nanoparticles
may exhibit strong directional forward light scattering at visible
and near-infrared wavelengths due to interference of
simultaneously excited electric and magnetic dipole reso-
nances. For a spherical particle shape, the so-called first
Kerker’s condition can be realized, at which the backward
scattering practically vanishes for some combination of
refractive index and particle size. However, realization of
Kerker’s condition for spherical particles is only possible at the
tail of the scattering resonances, when the particle scatters light
weakly. Here we demonstrate that significantly higher forward scattering can be realized if spheroidal particles are considered
instead. For each value of refractive index n exists an optimum shape of the particle, which produces minimum backscattering
efficiency together with maximum forward scattering. This effect is achieved due to the overlapping of magnetic and electric
dipole resonances of the spheroidal particle at the resonance frequency. It permits the design of very efficient, low-loss optical
nanoantennas. We show that the results obtained for spheroidal particles can accurately describe the response of a wide range of
practical particle shapes with the same aspect ratio, which can be obtained in experiment.
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Resonant nanoparticles and nanoantennas' become cru-
cially important for advanced photonic technologies
including on-chip interconnects, bioimaging, solar-cells, heat-
assisted magnetic recording, and so on. They can play the role
of nanooptical elements, which may substitute conventional
optics at subwavelength scale. During the past few years
significant attention has been paid to nanoparticles made of
low-loss high-refractive index dielectric and semiconductor
materials, in which one can observe both electric and magnetic
dipole resonances with comparable strengths at optical
frequencies.”™® Interference of these two modes allows to
fulfill a condition for almost zero backward light scattering, as
proposed by Kerker et al. for spherical particles more than three
decades ago.”’® Thus, these materials open a fascinating
opportunity to control directionality of scattering and design
efficient low-loss nanoantennas.''™'® The Kerker’s-type direc-
tional scattering was experimentally demonstrated first for
millimeter-scale ceramic spheres in the microwave regime,"*
and shortly after for nanometer-scales silicon nanospheres'
and gallium arsenide nanodisks'® in the visible spectral range.

In all the above cases, the zero-backward scattering condition
has been fulfilled on the long-wavelength tail of the magnetic
dipole resonance out of the maximum of the scattering
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amplitude. However, it was shown recently that, for
nanostructures with nonspherical shape, namely, flat silicon
disks with an aspect ratio around 1:2, electric and magnetic
dipole resonances can be overlapped,'”” providing a strong
forward scattering and almost zero backward scattering at the
scattering resonance maximum.

In this paper, we demonstrate that for spheroidal nano-
particles one can always find an optimum aspect ratio, at which
the overlapped electric and magnetic dipole resonances provide
simultaneously minimal backscattering and optimized forward
scattering. This optimum shape depends on the specific value
of material refractive index. We work in the frame of exact light
scattering methods and consider spheres and spheroids with
different aspect ratios.

First, scattering properties of spherical nanoparticles have
been analyzed using Mie theory'® (see Methods for details).
Figure 1 presents different scattering characteristics of spherical
nanoparticles with radius R versus their refractive index n and
size parameter q = 277R/A (here 4 is the wavelength of incident
light). In particular, the partial scattering efficiencies corre-
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Figure 1. (a) Total scattering efficiency, Q,, Vs size parameter q = 2zR/4 for refractive index n = 2.4. Four partial scattering efficiencies (curves with
open circles) corresponding to the electric dipole (ed), magnetic dipole (md), electric quadrupole (eq), and magnetic quadrupole (mq)
contributions. (b) Backscattering efficiency Qgg (in logarithmic scale) vs size parameter q for three different values of refractive index n = 2.0, 2.2, and
2.4, exhibiting a pronounced minima at particular values of size parameter. (c) Values of electric dipole coefficient a; (solid lines) and magnetic
dipole coefficient b, (dashed lines). Positions in which Rea; = Reb; and Ima, = Imb,, corresponding to the first Kerker condition,”"° are plotted as
filled circles. The associated values of g correspond with high accuracy to the minimum values of Qgg. For open circles one have Rea, = Reb, but
Ima, = —Im b,. (d) Trajectory of minimum back scattering on the plane of parameters {n,q}. Solid line presents solution to the equation a, = b,
while circles are numerical solutions to the equation Qpg — min. Inset in plot (d) shows polar scattering diagram'? along the trajectory Qgg — min
with pronounced forward scattering.
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Figure 2. Contour plot of the backscattering efficiency Qgs(q,n) on the g,n parameters’ plane. Dashed lines show trajectories of maximum total Q,,
(curve 1) and forward Qgg (curve 2) scattering efficiencies. Curve 3 shows the trajectory of the minimum back scattering efficiency. Inset shows the
variation of Q,, and Qg along the trajectory g = q(n), where Qgg reaches minimum (i.e., along curve 3). The upper right part of the inset presents
the function la,(n)*n* along the trajectory of the first Kerker’s condition.

sponding to Q®, electric dipole (ed), Q™ magnetic dipole with the resonant excitation of the magnetic dipolar and
(md), QS, electric quadrupole (eq), and Q™,, magnetic magnetic quadrupolar modes. We can also see pronounced
quadrupole (mq) are shown in Figure 1a for a sphere with n = minima in the backscattering cross sections depicted in Figure
2.4. The total scattering efficiency can be accurately described 1b. These minima correspond to the so-called “first Kerker’s
in this range of q values as a sum of these four partial resonant condition” a; = b, for which the amplitudes and phases of
efficiencies. The two observed dominant peaks can be identified electric and magnetic dipoles are equal. This condition is
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marked by filled circles in Figure lc. Satisfying the condition a;
= b, for both real and imaginary part leads to the solution ng =
a = const, where o & 2.7437 is the root of the equation:

14 (2a* = 1) cos(2a) + a(a® — 2) sin(2a) =0

which follows from equations (4)-(6) in Methods. In Figure 1d
we present the trajectory of minimum backscattering on a g,n
parameters’ plane. From this figure one can conclude that
minimum backscattering is well described by solution of ng = a
not only for g < 1 (i.e., conventional condition for applicability
of the dipole approximation) but even for values of size
parameter g of the order of unity. The reason for this effect can
be seen in Figure la for n = 2.4 and for a general case in
Supporting Information, Figure 1S. Along the trajectory q = ot/
n and for a refractive index above 1.5 higher order modes
(quadrupoles, etc.) are strongly suppressed compared to the
dominant dipole modes.

In Figure 2, we show a contour plot of the backscattering
cross-section where one can see the trajectory of the
pronounced minimum of Qgg(n,q) (dashed curve 3). Trajectory
of the maximum value of Qpg/Qyg (circles) practically coincides
with curve 3. Additionally, trajectories of the maximum value of
total scattering Q,(,9) (curve 1) and maximum forward
scattering Qgg(n,q) (curve 2) are also shown in the figure. All
these curves follow approximately hyperbolic dependence on
the refractive index and, consequently, do not cross each other.
This means that for a spherical particle, whatever the particle
parameters are, it is not possible to obtain resonant values of
the total Q,,(n,q) or forward Qgg(n,q) scattering efficiencies
along the trajectory fulfilling the first Kerker’s condition for the
minimum backward scattering a; = b;. From formula 2, see
Methods, the latter condition leads to Qg  la,l*/q*  n’la,P?,
and therefore, the maximum value of Qgg corresponds to the
maximum value of n*la* (see inset in Figure 2). However, the
values of scattering amplitudes la,| = |b;| at maximum Qgg are
quite small, below 0.5 (see Figure lc). It is clear that if we
would be able to overlap electric and magnetic resonances at
the point a; = b; ® 1 we could enhance both total and forward
scattering values.

One of the possibilities to satisfy condition a, = b; & 1 is to
use metallic-dielectric core—shell nanoparticles.” It can also be
reached by changing the particle’s shape, for example, using
oblate spheroidal nanoparticles instead of spheres. As it was
shown in our previous work (see Figure 4 in ref 15), squeezing
a silicon sphere into a spheroid with aspect ratio around 1:2, it
is possible to obtain overlapping between the electric and
magnetic dipole resonances and minimized backward scattering
close to the wavelength of scattering resonances. This is also
consistent with results published later for silicon nanodisks.'”
Going one step further, we will now demonstrate that for any
given value of the particle refractive index there is a particular
particle shape at which a resonant forward scattering with
minimized backward scattering can be realized.

Solution of the wave equation in spheroidal coordinates can
be made using the separation of variables method>' (see also
Methods). In the following we will focus our study on oblate
spheroids, since for this shape electric and magnetic dipole
resonances can be overlapped. An oblate spheroid (ellipsoid of
revolution) is obtained by the rotation of an ellipse with focal
distance d around its minor axis. The ratio of the major semiaxis
a to the minor semiaxis b (i.e., the aspect ratio a/b)
characterizes the particle shape, which may vary from a nearly
spherical (a/b ~ 1) to a disk one (a/b > 1). The particle size

995

can be specified by parameter g = (277/4)(d/2) related to the
length of the focal distance or by parameter g, = (27r,/4),
related to the radius of the sphere r, whose volume is equal to
that of the spheroid. For oblate spheroids, 7 = a’b. The
connection between g and g, is given by

N C70) S
qv g[(u/b)2 _ 1]1/2

where the size parameter q = (27a/A) plays the same role as
parameter (27R/1) in the Mie theory.

In general, the angle  between the propagation direction
and the rotation axis of the spheroid can be arbitrary (0° < § <
90°). Here, we study the case # = 0 when radiation propagates
along the minor axis.

In Figure 3 we show the total Q,, and forward Qg scattering
efficiencies (see Methods for details) of oblate spheroidal
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Figure 3. Variation of total Q,, (a) and forward Qg (b) scattering
efficiencies along the trajectories of minimum backward scattering for
oblate spheroidal particles with different refractive index n vs aspect
ratio a/b.

particles with different refractive index n versus aspect ratio a/b
along the trajectories of minimum backward scattering. It can
be seen from the figure that for each value of the particle
refractive index there is an aspect ratio of the spheroid a/b for
which the scattering efficiencies are optimized. As a general
rule, higher values of scattering efficiencies can be achieved with
higher refractive indices. This is not the case of spherical
particles whose directional scattering is optimized at refractive
index of ~2.45 (see inset in Figure 2). For each particular
material one can find an optimum spheroidal shape that will
produce a maximum forward scattering at a minimum back
scattering.

One can compare the efficiency of forward scattering by
spherical and spheroidal particles at the minimized back-
scattering condition. For example, spherical particle with n
2.4 has maximum forward scattering Qpg = Qg ~ 12.3 (see
inset in Figure 2). An optimized spheroidal particle with the
same refractive index and a/b = 1.7 has about 1.4X higher
forward scattering efficiency. With higher refractive index, this
difference becomes much more pronounced. For a spherical
particle with 7 ~ 4, one can reach maximum Qgg ~ 4. An oblate
particle with n ~ 4 and a/b ~ 2.25 permits to reach Qgg value
above 30, with the back scattering close to zero. This presents a
huge interest for optical antennas. Naturally, deformation of the
particle shape leads also to some shift in the position of the
resonant frequency.

~
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Final result of optimization is presented in Figure 4. It shows
the dependence of the optimum shape of the spheroids on the
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Figure 4. Optimum shape a/b (solid lines) and size parameter q
(dashed lines) for spheroidal particles vs value of refractive index n.

particle refractive index: a/b = f(n), which corresponds to
maximum of Q. or Qg (solid lines) with minimized Qyg.
Resonant frequencies follow from the resonant values of the
size parameter g = q(n) related to these shapes (shown by
corresponding dashed curves). For example, for n = 3.5, one
can find from Figure 4 values a/b =~ 2.09 and q ~ 1.28 for
optimum forward scattering.

As we mentioned above, the physical reason for scattering
maximization is related to overlapping of magnetic and electric
dipole resonances of the particles. Dynamics of this overlapping
for particles with refractive index n = 3.5 is shown in Figure S.
For spherical particle a/b = 1 magnetic (md) and electric (ed)
dipole resonances are well separated. It can be easily seen from
the corresponding partial scattering efficiencies calculated from
the Mie theory. Similar multipole decomposition for partial
efficiencies can be done for spheroidal particles as well (see
Methods for details). According to Figure 4, optimum
condition for forward scattering is reached for a/b = 2.086.
In Figure 5 one can see that with increase of the aspect ratio the
electric and magnetic dipole resonances approach each other
and fully merged at a/b = 2.086, which allows obtaining
minimum backward scattering condition at the resonance of
total scattering.

We would like to highlight that saying “electric dipole
resonance” we mean the first electric dipole maximum for the
smallest value of the size parameter. As it can be seen from
Figure 5, other electric dipole maxima, even with higher
intensity, appear at higher values of the size parameter. This
electric dipole behavior is known for different dielectric
nanoparticle shapes and is strongly affected by interference
between the electric di}z)ole and toroidal dipole, which has
similar radiation pattern.”

Up to this point we have only considered lossless particles.
Naturally, material absorption, in general, should influence both
scattering diagram and near field intensity distribution. We
estimated this influence from the Mie theory for spherical
particles. For materials with a refractive index n > 2 and k <
0.05 (typical for weakly dissipative materials), variations in
scattering diagram are negligible (see Figure S2 in Supporting
Information). For Si particles at IR range with 4 > 1 um
dissipation practically does not influence scattering diagram.

Another important issue, with implications to a possible
experimental realization, concerns the influence of a substrate,
which is always necessary to support nanoparticles. There are
two ways to support such a particle: (1) immerse it in
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Figure S. Overlapping of electric and magnetic dipole resonances for
different particle shapes. Total scattering efficiency (black line),
together with the corresponding electric Q; ¢) (red line) and magnetic
QJ("') (blue line) scattering dipolar contributions are plotted vs size
parameter ¢ for different values of the aspect ratio a/b, ranging from 1
(sphere) to the optimized value 2.086. Green and purple curves plot
the scattering contribution of the magnetic and electric quadrupole
modes, respectively.

transparent materials with lower refractive index or (2) put it
on a substrate. For spherical particles, the influence of
surrounding media can be studied with the Mie theory. It
shows that the electric dipole resonance is red-shifted and
broadened (compared to particle in vacuum), while position of
magnetic dipole resonance is less sensitive to the refractive
index of the surrounding media, and only broadens. Thus,
investigation of the Kerker resonance in this situation shows
that the conditions for maximal forward scattering can still be
met, with a red shift in the peak position and a broadening of
the resonance. For spheroids, any detuning in the relative
positions of electric and magnetic dipole resonances can be
compensated by adjusting the geometrical aspect ratio. Some of
the shape effects for metallic particles in different surrounding
media were also investigated.”®

For a particle on the surface, this problem also has an exact
analytical solution.** The solution is valid for any incident
angle. Investigation of the influence of the substrate based on
the exact analytical solution was done for spherical plasmonic
particles, for example, in ref 25. In this case, the electric dipole
resonance also presents a red shift and broadening. Recently
this problem was numerically investigated for the case of
cylindrical dielectric nanoparticles.”® This paper also demon-
strates that effect of substrate is more pronounced for the
electric resonance. Nevertheless, for spheroid, this effect can
also be compensated by tuning the aspect ratio.

Although above we investigated only spheroidal nano-
particles, this is not the only shape for which the directional
scattering effect can be achieved. It can be expected that all
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different types of geometries (e.g,, cylinders, bricks, etc.) should
have qualitatively similar variations of scattering properties
versus nanoparticle shape. To prove this in Figure 6, we
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Figure 6. Scattering characteristics for parallelepiped (top panel),
cylindrical (middle panel), and spheroid (bottom panel) particles with
the same aspect ratio of 2.086 and refractive index n = 3.5. Scattering
efficiencies of electric and magnetic dipoles obtained through
multipole decomposition are shown by red and green lines,
respectively. Scattering cross sections are normalized by the cross-
section of the sphere with the volume equal to that of each
nanoparticle.

additionally compared three different types of geometries
(spheroids, cylinders, bricks) with the refractive index n = 3.5. It
can be seen that the optimal aspect ratio and maximal scattering
values are almost the same for all three shapes. The only
difference is in the optimal resonance positions. Thus, from the
analysis of spheroidal particles we can also understand the
shape effect in the other geometries. The advantage of
spheroids is a possibility to use analytical calculations based
on exact solutions of Maxwell equations, while the other
geometries require time-consuming numerical calculations.

In conclusion, we have investigated the problem of the shape
optimization for oblate spheroidal dielectric particles aimed to
obtain minimum backscattering together with maximized total
and forward scattering. We have shown that this optimization is
possible for any given value of refractive index. Such optimized
particles are extremely efficient directional optical nano-
antennas, which can act as Huygens sources.'" Efficiency of
spheroidal scatterers depends on the refractive index of the
material and can be significantly higher than those which can be
reached with spherical particles. These calculations also permit
to understand the shape effect in the other practical geometries
important from the experimental point of view (cylinders,

blocks, etc.).

B METHODS

Scattering by Spheres. Scattering efficiencies for total,
Qo forward, Qgg, and backward, Qgg, scattering of a spherical
particle can be derived within the framework of Mie theory'®
and written as

2 (o]
Q. == D, @1+ D)(laf + b))

9 = (1)
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2

Q= — | > @+ 1)@ +b)
i et @)
. 2
1
Qs = | 2, @+ 1)(=1)(a) - b)
q |= 3)

The electric, a;, and magnetic, b;, scattering amplitudes for
nonmagnetic materials, and dielectric permittivity &€ = n* (n
being the refractive index of the particle material) are given by

R Ry
where R, and 7; functions are defined as follows:
R =y (@us(ng) = yi(@)y(nq),
T =y (@wi(ng) — (@) (nq) ()
R = ny; (nq)wi(q) — w(n@)y; (),
T = ny (@ (ng) — y(na)y () ©

Here, yi(2) = [, ,(2) %(2) = [ZNiyial2), where

Jj+1/,(2) and Ny, /5(2) are the Bessel and Neumann functions.

The radius of the particle R enters in this theory through the
dimensionless size parameter g = wR/c = 2nR/A, where @ is the
angular frequency, ¢ the speed of light, and A the radiation
wavelength in vacuum. The prime in formulas S and 6 indicates
differentiation with respect to the argument of the function,
that is, y,(z) = dy;(z)/dz, and so on. The efficiencies (1)—(3)
represent the corresponding cross sections normalized to the
geometrical cross section of the sphere. The total scattering
efficiency is then given by the sum of partial scattering
efficiencies:

Q.= Q7+ Q™
=1 (7)

where each partial efficiency corresponds to the radiation of the

I-th order multipole. Terms Ql(e) and Ql(m) describe the

radiation related to the electric and magnetic polarizabilities,
respectively. We consider transparent dielectrics with Ime = 0,
$0 Qo = Qucar

Scattering by Spheroids. The optical properties of
spheroidal particles can be determined by various methods of
light scattering theory. Most frequently, the separation of
variables method and the T-matrix method are used. The
survey of methods can be found in ref 27 (see also Database of
Optical Properties of cosmic dust analogues, DOP, http://
www.astro.spbu.ru/DOP/3-REVS/index.html).

Asano and Yamamoto® obtained the first solution to the
light scattering problem for spheroids with a complex refractive
index. The method is based on the solution to the Helmholtz
equation in the spheroidal coordinate system. Asano and
Yamamoto applied the Debye potentials to describe the
electromagnetic fields, which is similar to the Mie solution
for spheres. The scattering coeflicients then are found in the
infinite systems of the linear algebraic equations and can be
found by solving truncated systems.
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Another solution was published by Farafonov®® (see ref 30
for first numerical results). Its principal distinction from the
previous one is the special basis for the representation of the
electromagnetic fields, a combination of the Debye and Hertz
potentials (ie, the potentials introduced to solve the light
scattering problem for spheres and infinitely long cylinders,
respectively). The approach has an incontestable advantage for
strongly elongated or flattened particles.

In this paper, we use the most recent version of the
numerical code based on the Farafonov’s solution (see http://
www.astro.spbu.ru/DOP/6-SOFT/SPHEROID/1-SPH_new/
). The comparison of methods and benchmark results can be
found in ref 31.

For spheroids, one usually calculates the scattering efficiency
factors Q = 6/S, which are the ratios of the corresponding cross
sections ¢ to the geometrical cross-section S of the spheroid
(the area of the particle’s shadow). For oblate spheroids and
=0, S = ma®. The efficiencies for forward, Qg, and backward,
Qgg, scattering are> (pay attention that eq 5.80 for back-
scattering efficiency in ref 32, p. 137 must be corrected):

2

1 (1) o .
Qs= 575 | 2 bV T d(=ig)(r + 1)(r +2)
qv ([l/b) I=1 r=0,1
(8)
. 2
1 [se]
Q=57 | 26" X d(=ig)(r + 1)(r +2)
qv (a/b) = r=0,1
©)
Here, bl(l) are the coefficients for scattered radiation, which are

determined from the solution to the light scattering problem,
and drll(—ig) are the expansion coefficients of oblate angular
spheroidal functions in terms of associated Legendre
polynomials. The prime over the summation symbols indicates
the even (odd) terms only are summarized when the index
(I = 1) is even (odd).

A convenient way to compare the optical properties of
particles with different shapes is normalizing the cross sections
by the geometrical cross sections of the equal volume spheres,
o/nr. For oblate spheroids and f = 0°, we have

Q=—5=(a/b)"’Q

ar? (10)

We note that the case of f # 0 is also very interesting due to
the appearance of additional, azimuthally nonsymmetric
modes.®® This study, being much more involved, would
however obscure the simplicity of the present results and
deserve, in our opinion, a separate publication.

Multipole Decomposition. Multipole decomposition
allows one to identify the multipolar character of the different
resonances being excited in a system. 3736 1n our case, it was
performed by projecting the electromagnetic field scattered by
the spheroids into the Vector Spherical Harmonics basis on a
spherical surface with radius R, enclosing the structure. The
center of the sphere was chosen to coincide with the center of
the spheroid. In this way, one can compute the electric a;,, and
magnetic by, scattering coefficients associated with a certain
multipolar contribution as

( )l+1kR
hO(R) (221 + 1)I(1 + 1)]/2E

/ YE(6, §)P-E,.dQ
(11)

AU =

998

_ n(— i)lkRo
b = hO(R,)[2(2] + DI + 1)]/?E f Y0 )F-Hidd
(12)

where h{V(kR,) is the spherical Hankel function of first kind
and order I, E, is the amplitude of the incident field, the
scattered fields are projected into a radial unitary vector and:

204+ 1 (1 —m)!
(I +m)! (13)

with P"(cos 0) being the associated Legendre polynomials. The
partial scattering efficiency due to the I-th electric or magnetic
multipole can then be computed as

2
3

m=—I

Z Ib,, I

m=—I

Y,(0, ¢) = ——— P"(cos 0)e™”

E +1

(14)

+1

QM
(13)
Q or Q is obtained depending on whether one uses g or q,. The
total scattering efficiency can be retrieved by summing up the
contributions of the different electric and magnetic multipoles.
While the choice of the radius of the sphere is arbitrary, the
only requirement to achieve accurate results is a sufficiently
accurate angular resolution in the integral.
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(S1) An additional figure showing the variation of quadrupole
mode amplitudes a, and b, versus refractive index along the
trajectory of Kerker’s condition. (S2) An additional figure
showing the dependence of the scattering diagram on the
dissipation parameter. The Supporting Information is available
free of charge on the ACS Publications website at DOI:
10.1021/acsphotonics.5b00261.
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